3.1909 \(\int (a+\frac {b}{x^2})^{5/2} x \, dx\)

Optimal. Leaf size=80 \[ \frac {5}{2} a^{3/2} b \tanh ^{-1}\left (\frac {\sqrt {a+\frac {b}{x^2}}}{\sqrt {a}}\right )+\frac {1}{2} x^2 \left (a+\frac {b}{x^2}\right )^{5/2}-\frac {5}{6} b \left (a+\frac {b}{x^2}\right )^{3/2}-\frac {5}{2} a b \sqrt {a+\frac {b}{x^2}} \]

[Out]

-5/6*b*(a+b/x^2)^(3/2)+1/2*(a+b/x^2)^(5/2)*x^2+5/2*a^(3/2)*b*arctanh((a+b/x^2)^(1/2)/a^(1/2))-5/2*a*b*(a+b/x^2
)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 80, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.385, Rules used = {266, 47, 50, 63, 208} \[ \frac {5}{2} a^{3/2} b \tanh ^{-1}\left (\frac {\sqrt {a+\frac {b}{x^2}}}{\sqrt {a}}\right )+\frac {1}{2} x^2 \left (a+\frac {b}{x^2}\right )^{5/2}-\frac {5}{6} b \left (a+\frac {b}{x^2}\right )^{3/2}-\frac {5}{2} a b \sqrt {a+\frac {b}{x^2}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b/x^2)^(5/2)*x,x]

[Out]

(-5*a*b*Sqrt[a + b/x^2])/2 - (5*b*(a + b/x^2)^(3/2))/6 + ((a + b/x^2)^(5/2)*x^2)/2 + (5*a^(3/2)*b*ArcTanh[Sqrt
[a + b/x^2]/Sqrt[a]])/2

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + 1)), x] - Dist[(d*n)/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m + n + 2, 0
] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c, d, m, n, x]

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \left (a+\frac {b}{x^2}\right )^{5/2} x \, dx &=-\left (\frac {1}{2} \operatorname {Subst}\left (\int \frac {(a+b x)^{5/2}}{x^2} \, dx,x,\frac {1}{x^2}\right )\right )\\ &=\frac {1}{2} \left (a+\frac {b}{x^2}\right )^{5/2} x^2-\frac {1}{4} (5 b) \operatorname {Subst}\left (\int \frac {(a+b x)^{3/2}}{x} \, dx,x,\frac {1}{x^2}\right )\\ &=-\frac {5}{6} b \left (a+\frac {b}{x^2}\right )^{3/2}+\frac {1}{2} \left (a+\frac {b}{x^2}\right )^{5/2} x^2-\frac {1}{4} (5 a b) \operatorname {Subst}\left (\int \frac {\sqrt {a+b x}}{x} \, dx,x,\frac {1}{x^2}\right )\\ &=-\frac {5}{2} a b \sqrt {a+\frac {b}{x^2}}-\frac {5}{6} b \left (a+\frac {b}{x^2}\right )^{3/2}+\frac {1}{2} \left (a+\frac {b}{x^2}\right )^{5/2} x^2-\frac {1}{4} \left (5 a^2 b\right ) \operatorname {Subst}\left (\int \frac {1}{x \sqrt {a+b x}} \, dx,x,\frac {1}{x^2}\right )\\ &=-\frac {5}{2} a b \sqrt {a+\frac {b}{x^2}}-\frac {5}{6} b \left (a+\frac {b}{x^2}\right )^{3/2}+\frac {1}{2} \left (a+\frac {b}{x^2}\right )^{5/2} x^2-\frac {1}{2} \left (5 a^2\right ) \operatorname {Subst}\left (\int \frac {1}{-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+\frac {b}{x^2}}\right )\\ &=-\frac {5}{2} a b \sqrt {a+\frac {b}{x^2}}-\frac {5}{6} b \left (a+\frac {b}{x^2}\right )^{3/2}+\frac {1}{2} \left (a+\frac {b}{x^2}\right )^{5/2} x^2+\frac {5}{2} a^{3/2} b \tanh ^{-1}\left (\frac {\sqrt {a+\frac {b}{x^2}}}{\sqrt {a}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.01, size = 54, normalized size = 0.68 \[ -\frac {b^2 \sqrt {a+\frac {b}{x^2}} \, _2F_1\left (-\frac {5}{2},-\frac {3}{2};-\frac {1}{2};-\frac {a x^2}{b}\right )}{3 x^2 \sqrt {\frac {a x^2}{b}+1}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b/x^2)^(5/2)*x,x]

[Out]

-1/3*(b^2*Sqrt[a + b/x^2]*Hypergeometric2F1[-5/2, -3/2, -1/2, -((a*x^2)/b)])/(x^2*Sqrt[1 + (a*x^2)/b])

________________________________________________________________________________________

fricas [A]  time = 0.60, size = 170, normalized size = 2.12 \[ \left [\frac {15 \, a^{\frac {3}{2}} b x^{2} \log \left (-2 \, a x^{2} - 2 \, \sqrt {a} x^{2} \sqrt {\frac {a x^{2} + b}{x^{2}}} - b\right ) + 2 \, {\left (3 \, a^{2} x^{4} - 14 \, a b x^{2} - 2 \, b^{2}\right )} \sqrt {\frac {a x^{2} + b}{x^{2}}}}{12 \, x^{2}}, -\frac {15 \, \sqrt {-a} a b x^{2} \arctan \left (\frac {\sqrt {-a} x^{2} \sqrt {\frac {a x^{2} + b}{x^{2}}}}{a x^{2} + b}\right ) - {\left (3 \, a^{2} x^{4} - 14 \, a b x^{2} - 2 \, b^{2}\right )} \sqrt {\frac {a x^{2} + b}{x^{2}}}}{6 \, x^{2}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/x^2)^(5/2)*x,x, algorithm="fricas")

[Out]

[1/12*(15*a^(3/2)*b*x^2*log(-2*a*x^2 - 2*sqrt(a)*x^2*sqrt((a*x^2 + b)/x^2) - b) + 2*(3*a^2*x^4 - 14*a*b*x^2 -
2*b^2)*sqrt((a*x^2 + b)/x^2))/x^2, -1/6*(15*sqrt(-a)*a*b*x^2*arctan(sqrt(-a)*x^2*sqrt((a*x^2 + b)/x^2)/(a*x^2
+ b)) - (3*a^2*x^4 - 14*a*b*x^2 - 2*b^2)*sqrt((a*x^2 + b)/x^2))/x^2]

________________________________________________________________________________________

giac [B]  time = 0.50, size = 142, normalized size = 1.78 \[ \frac {1}{2} \, \sqrt {a x^{2} + b} a^{2} x \mathrm {sgn}\relax (x) - \frac {5}{4} \, a^{\frac {3}{2}} b \log \left ({\left (\sqrt {a} x - \sqrt {a x^{2} + b}\right )}^{2}\right ) \mathrm {sgn}\relax (x) + \frac {2 \, {\left (9 \, {\left (\sqrt {a} x - \sqrt {a x^{2} + b}\right )}^{4} a^{\frac {3}{2}} b^{2} \mathrm {sgn}\relax (x) - 12 \, {\left (\sqrt {a} x - \sqrt {a x^{2} + b}\right )}^{2} a^{\frac {3}{2}} b^{3} \mathrm {sgn}\relax (x) + 7 \, a^{\frac {3}{2}} b^{4} \mathrm {sgn}\relax (x)\right )}}{3 \, {\left ({\left (\sqrt {a} x - \sqrt {a x^{2} + b}\right )}^{2} - b\right )}^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/x^2)^(5/2)*x,x, algorithm="giac")

[Out]

1/2*sqrt(a*x^2 + b)*a^2*x*sgn(x) - 5/4*a^(3/2)*b*log((sqrt(a)*x - sqrt(a*x^2 + b))^2)*sgn(x) + 2/3*(9*(sqrt(a)
*x - sqrt(a*x^2 + b))^4*a^(3/2)*b^2*sgn(x) - 12*(sqrt(a)*x - sqrt(a*x^2 + b))^2*a^(3/2)*b^3*sgn(x) + 7*a^(3/2)
*b^4*sgn(x))/((sqrt(a)*x - sqrt(a*x^2 + b))^2 - b)^3

________________________________________________________________________________________

maple [B]  time = 0.01, size = 149, normalized size = 1.86 \[ -\frac {\left (\frac {a \,x^{2}+b}{x^{2}}\right )^{\frac {5}{2}} \left (-15 a^{2} b^{3} x^{3} \ln \left (\sqrt {a}\, x +\sqrt {a \,x^{2}+b}\right )-15 \sqrt {a \,x^{2}+b}\, a^{\frac {5}{2}} b^{2} x^{4}-10 \left (a \,x^{2}+b \right )^{\frac {3}{2}} a^{\frac {5}{2}} b \,x^{4}-8 \left (a \,x^{2}+b \right )^{\frac {5}{2}} a^{\frac {5}{2}} x^{4}+8 \left (a \,x^{2}+b \right )^{\frac {7}{2}} a^{\frac {3}{2}} x^{2}+2 \left (a \,x^{2}+b \right )^{\frac {7}{2}} \sqrt {a}\, b \right ) x^{2}}{6 \left (a \,x^{2}+b \right )^{\frac {5}{2}} \sqrt {a}\, b^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b/x^2)^(5/2)*x,x)

[Out]

-1/6*((a*x^2+b)/x^2)^(5/2)*x^2*(-8*(a*x^2+b)^(5/2)*a^(5/2)*x^4+8*(a*x^2+b)^(7/2)*a^(3/2)*x^2-10*(a*x^2+b)^(3/2
)*a^(5/2)*x^4*b-15*(a*x^2+b)^(1/2)*a^(5/2)*x^4*b^2+2*(a*x^2+b)^(7/2)*b*a^(1/2)-15*ln(a^(1/2)*x+(a*x^2+b)^(1/2)
)*x^3*a^2*b^3)/(a*x^2+b)^(5/2)/b^2/a^(1/2)

________________________________________________________________________________________

maxima [A]  time = 1.87, size = 81, normalized size = 1.01 \[ \frac {1}{2} \, \sqrt {a + \frac {b}{x^{2}}} a^{2} x^{2} - \frac {5}{4} \, a^{\frac {3}{2}} b \log \left (\frac {\sqrt {a + \frac {b}{x^{2}}} - \sqrt {a}}{\sqrt {a + \frac {b}{x^{2}}} + \sqrt {a}}\right ) - \frac {1}{3} \, {\left (a + \frac {b}{x^{2}}\right )}^{\frac {3}{2}} b - 2 \, \sqrt {a + \frac {b}{x^{2}}} a b \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/x^2)^(5/2)*x,x, algorithm="maxima")

[Out]

1/2*sqrt(a + b/x^2)*a^2*x^2 - 5/4*a^(3/2)*b*log((sqrt(a + b/x^2) - sqrt(a))/(sqrt(a + b/x^2) + sqrt(a))) - 1/3
*(a + b/x^2)^(3/2)*b - 2*sqrt(a + b/x^2)*a*b

________________________________________________________________________________________

mupad [B]  time = 1.75, size = 66, normalized size = 0.82 \[ \frac {a^2\,x^2\,\sqrt {a+\frac {b}{x^2}}}{2}-\frac {b\,{\left (a+\frac {b}{x^2}\right )}^{3/2}}{3}-2\,a\,b\,\sqrt {a+\frac {b}{x^2}}-\frac {a^{3/2}\,b\,\mathrm {atan}\left (\frac {\sqrt {a+\frac {b}{x^2}}\,1{}\mathrm {i}}{\sqrt {a}}\right )\,5{}\mathrm {i}}{2} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(a + b/x^2)^(5/2),x)

[Out]

(a^2*x^2*(a + b/x^2)^(1/2))/2 - (b*(a + b/x^2)^(3/2))/3 - (a^(3/2)*b*atan(((a + b/x^2)^(1/2)*1i)/a^(1/2))*5i)/
2 - 2*a*b*(a + b/x^2)^(1/2)

________________________________________________________________________________________

sympy [A]  time = 4.00, size = 112, normalized size = 1.40 \[ \frac {a^{\frac {5}{2}} x^{2} \sqrt {1 + \frac {b}{a x^{2}}}}{2} - \frac {7 a^{\frac {3}{2}} b \sqrt {1 + \frac {b}{a x^{2}}}}{3} - \frac {5 a^{\frac {3}{2}} b \log {\left (\frac {b}{a x^{2}} \right )}}{4} + \frac {5 a^{\frac {3}{2}} b \log {\left (\sqrt {1 + \frac {b}{a x^{2}}} + 1 \right )}}{2} - \frac {\sqrt {a} b^{2} \sqrt {1 + \frac {b}{a x^{2}}}}{3 x^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/x**2)**(5/2)*x,x)

[Out]

a**(5/2)*x**2*sqrt(1 + b/(a*x**2))/2 - 7*a**(3/2)*b*sqrt(1 + b/(a*x**2))/3 - 5*a**(3/2)*b*log(b/(a*x**2))/4 +
5*a**(3/2)*b*log(sqrt(1 + b/(a*x**2)) + 1)/2 - sqrt(a)*b**2*sqrt(1 + b/(a*x**2))/(3*x**2)

________________________________________________________________________________________